Package ‘configural’

January 18, 2021

Type Package
Title Multivariate Profile Analysis
Version 0.1.4
Date 2021-01-16

BugReports https://github.com/bwiernik/configural/issues

License GPL (>= 3)
Depends R (>= 3.4.0)
Encoding UTF-8
LazyData true
Imports stats
Suggests crayon
RoxygenNote 7.1.1
NeedsCompilation no
Author Brenton M. Wiernik [aut, cre]
Maintainer Brenton M. Wiernik <brenton@wiernik.org>
Repository CRAN
Date/Publication 2021-01-18 21:30:03 UTC

R topics documented:

 configural-package .. 2
 adjust_Rsq .. 3
 configural_news .. 4
 cor_covariance ... 4
 cor_covariance_meta ... 5
 cor_labels .. 6
Description

Overview of the configural package.

Details

The configural package provides tools for conducting configural and profile analyses. It currently supports criterion profile analysis (Davison & Davenport, 2002) and meta-analytic criterion profile analysis (Wiernik et al., 2019). Functions are provided to calculate criterion patterns and CPA variance decomposition, as well as for computing confidence intervals, shrinkage corrections, and fungible patterns.

Author(s)

Maintainer: Brenton M. Wiernik <brenton@wiernik.org>

See Also

Useful links:

- Report bugs at https://github.com/bwiernik/configural/issues
adjust_Rsq

Adjust a regression model R-squared for overfitting

Description

Estimate shrinkage for regression models

Usage

adjust_Rsq(Rsq, n, p, adjust = c("fisher", "pop", "cv"))

Arguments

Rsq Observed model R-squared
n Sample size
p Number of predictors
adjust Which adjustment to apply. Options are "fisher" for the Adjusted R-squared method used in stats::lm(), "pop" for the positive-part Pratt estimator of the population R-squared, and "cv" for the Browne/positive-part Pratt estimator of the cross-validity R-squared. Based on Shieh (2008), these are the estimators for the population and cross-validity R-squared values that show the least bias with a minimal increase in computational complexity.

Value

An adjusted R-squared value.

References

Examples

adjust_Rsq(.55, 100, 6, adjust = "pop")
configural_news

Retrieve the NEWS file for the configural package

Description
This function gives a shortcut to the `utils::news(package = "configural")` function and displays configural’s NEWS file, which contains version information, outlines additions and changes to the package, and describes other updates.

Usage
`configural_news()`

Examples
`configural_news()`

cor_covariance

Calculate the asymptotic sampling covariance matrix for the unique elements of a correlation matrix

Description
Calculate the asymptotic sampling covariance matrix for the unique elements of a correlation matrix

Usage
`cor_covariance(r, n)`

Arguments
- `r`: A correlation matrix
- `n`: The sample size

Value
The asymptotic sampling covariance matrix

Author(s)
Based on an internal function from the `fungible` package by Niels Waller

References
Examples

cor_covariance(matrix(c(1, .2, .3, .2, 1, .3, .3, .3, 1), ncol = 3), 100)

Description

Estimate the asymptotic sampling covariance matrix for the unique elements of a meta-analytic correlation matrix.

Usage

cor_covariance_meta(
 r,
 n,
 sevar,
 source = NULL,
 rho = NULL,
 sevar_rho = NULL,
 n_overlap = NULL
)

Arguments

r A meta-analytic matrix of observed correlations (can be full or lower-triangular).

n A matrix of total sample sizes for the meta-analytic correlations in r (can be full or lower-triangular).

sevar A matrix of estimated sampling error variances for the meta-analytic correlations in r (can be full or lower-triangular).

source A matrix indicating the sources of the meta-analytic correlations in r (can be full or lower-triangular). Used to estimate overlapping sample size for correlations when n_overlap == NULL.

rho A meta-analytic matrix of corrected correlations (can be full or lower-triangular).

sevar_rho A matrix of estimated sampling error variances for the meta-analytic corrected correlations in rho (can be full or lower-triangular).

n_overlap A matrix indicating the overlapping sample size for the unique (lower triangular) values in r (can be full or lower-triangular). Values must be arranged in the order returned by cor_labels(colnames(R)).

Details

If both source and n_overlap are NULL, it is assumed that all meta-analytic correlations come from the same source.
Value

The estimated asymptotic sampling covariance matrix.

References

Examples

```r
cor_covariance_meta(r = mindfulness$r, n = mindfulness$n,
                    sevar = mindfulness$sevar_r, source = mindfulness$source)
```

cor_labels

Generate labels for correlations from a vector of variable names

Description

This function returns a vector of labels for the unique correlations between pairs of variables from a supplied vector of variable names.

Usage

```r
cor_labels(var_names)
```

Arguments

- `var_names` A character vector of variable names.

Value

A vector of correlation labels.

Examples

```r
cor_labels(colnames(mindfulness$r))
```
Conduct criterion profile analysis using a correlation matrix

Description

Conduct criterion profile analysis using a correlation matrix

Usage

```r
cpa_mat(
  formula,
  cov_mat,
  n = NULL,
  se_var_mat = NULL,
  se_beta_method = c("normal", "lm"),
  adjust = c("fisher", "pop", "cv"),
  conf_level = 0.95,
  ...
)
```

Arguments

- `formula` Regression formula with a single outcome variable on the left-hand side and one or more predictor variables on the right-hand side (e.g., `Y ~ X1 + X2`).
- `cov_mat` Correlation matrix containing the variables to be used in the regression.
- `n` Sample size. Used to compute adjusted R-squared and, if `se_var_mat` is NULL, standard errors. If NULL and `se_var_mat` is specified, effective sample size is computed based on `se_var_mat` (cf. Revelle et al., 2017).
- `se_var_mat` Optional. The sampling error covariance matrix among the unique elements of `cov_mat`. Used to calculate standard errors. If not supplied, the sampling covariance matrix is calculated using `n`.
- `se_beta_method` Method to use to estimate the standard errors of standardized regression (beta) coefficients. Current options include "normal" (use the Jones-Waller, 2015, normal-theory approach) and "lm" (estimate standard errors using conventional regression formulas).
- `adjust` Method to adjust R-squared for overfitting. See `adjust_Rsq()` for details.
- `conf_level` Confidence level to use for confidence intervals.
- `...` Additional arguments.

Value

An object of class "cpa" containing the criterion pattern vector and CPA variance decomposition
References

Examples

```r
cp <- cor_covariance_meta(mindfulness$r, mindfulness$n, mindfulness$sevar_r, mindfulness$source)
cpa_mat(mindfulness ~ ES + A + C + Ex + O,
cov_mat = mindfulness$r,
n = NULL,
se_var_mat = sevar,
adjust = "pop")
```

cpa_scores

Compute CPA level and pattern scores for a set of data

Description

Compute CPA level and pattern scores for a set of data

Usage

```r
cpa_scores(
cpa_mod,
newdata = NULL,
augment = TRUE,
cpa_names = c("cpa_lev", "cpa_pat"),
scale = FALSE,
scale_center = TRUE,
scale_scale = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpa_mod</td>
<td>A model returned from <code>cpa_mat()</code> (a model of class "cpa")</td>
</tr>
<tr>
<td>newdata</td>
<td>A data frame or matrix containing columns with the same names as the predictors in <code>cpa_mod</code>.</td>
</tr>
<tr>
<td>augment</td>
<td>Should be CPA score columns be added to <code>newdata</code> (TRUE, default) or returned alone (FALSE)?</td>
</tr>
</tbody>
</table>
disorders

`cpa_names` Character vector of length 2 giving the variable names to assign to the CPA score columns.

`scale` Logical. Should the variables in `newdata` be scaled (standardized)?

`scale_center` If `scale` is TRUE, passed to the center argument in `base::scale()`. Can be TRUE (center columns of `newdata` around the column means), FALSE (don’t center), or a numeric vector of length equal to the number of predictors in `cpa_mod` containing the values to center around.

`scale_scale` If `scale` is TRUE, passed to the scale argument in `base::scale()`. Can be TRUE (scale/standardize columns of `newdata` using the column standard deviations or root mean squares), FALSE (don’t scale), or a numeric vector of length equal to the number of predictors in `cpa_mod` containing the values to scale by. See `base::scale()` for details.

Value

A data frame containing the CPA score variables.

Examples

```r
sevar <- cor_covariance_meta(mindfulness$r, mindfulness$n, mindfulness$sevar_r, mindfulness$source)
cpa_mod <- cpa_mat(mindfulness ~ ES + A + C + Ex + O,
                   cov_mat = mindfulness$r,
                   n = NULL,
                   se_var_mat = sevar,
                   adjust = "pop")
newdata <- data.frame(ES = c(4.2, 3.2, 3.4, 4.2, 3.8, 4.0, 5.6, 2.8, 3.4, 2.8),
                      A = c(4.0, 4.2, 3.8, 4.6, 4.0, 4.6, 4.6, 2.6, 3.6, 5.4),
                      C = c(2.8, 4.0, 4.0, 3.0, 4.4, 5.6, 4.4, 3.4, 4.0, 5.6),
                      Ex = c(3.8, 5.0, 4.2, 3.6, 4.8, 5.6, 4.2, 2.4, 3.4, 4.8),
                      O = c(3.0, 4.0, 4.8, 3.2, 3.6, 5.0, 5.4, 4.2, 5.0, 5.2))
newdata_cpa <- cpa_scores(cpa_mod, newdata, augment = FALSE)
newdata_augment <- cpa_scores(cpa_mod, newdata, augment = TRUE)
```

disorders Meta-analytic correlations among Big Five personality traits and psychological disorders

Description

Big Five intercorrelations from Davies et al. (2015). Big Five–psychological disorder correlations from Kotov et al. (2010). Note that there were several duplicate or missing values in the reported data table in the published article. These results are based on corrected data values.

Usage

```r
data(disorders)
```
fungible

Format

list with entries r (mean observed correlations), rho (mean corrected correlations), n (sample sizes), sevar_r (sampling error variances for mean observed correlations), sevar_rho (sampling error variances for mean corrected correlations), and source (character labels indicating which meta-analytic correlations came from the same source)

References

Examples

data(disorders)

fungible

Locate extrema of fungible weights for regression and related models

Description

Generates fungible regression weights (Waller, 2008) and related results using the method by Waller and Jones (2010).

Usage

fungible(
 object,
 theta = 0.005,
 Nstarts = 1000,
 MaxMin = c("min", "max"),
 silent = FALSE,
 ...
)

Arguments

object A fitted model object. Currently supported classes are: "cpa"
theta A vector of values to decrement from R-squared to compute families of fungible coefficients.
Nstarts Maximum number of (max) minimizations from random starting configurations.
MaxMin
Should the cosine between the observed and alternative weights be maximized
("max") to find the maximally similar coefficients or minimized ("min") to find
the maximally dissimilar coefficients?
silent
Should current optimization values be printed to the console (FALSE) or sup-
pressed (TRUE)?

... Additional arguments

Value
A list containing the alternative weights and other fungible weights estimation parameters

Author(s)
Niels Waller, Jeff Jones, Brenton M. Wiernik. Adapted from fungible::fungibleExtrema().

References
doi: 10.1007/s113360089066z

Examples
mind <- cpa_mat(mindfulness ~ ES + A + C + Ex + O,
cov_mat = mindfulness$r,
n = harmonic_mean(vechs(mindfulness$n)),
se_var_mat = cor_covariance_meta(mindfulness$r,
mindfulness$n,
mindfulness$sevar_r,
mindfulness$source),
adjust = "pop")
mind_fung <- fungible(mind, Nstarts = 100)
fungible.cpa

Usage

S3 method for class 'cpa'
fungible(
 object,
 theta = 0.005,
 Nstarts = 1000,
 MaxMin = c("min", "max"),
 silent = FALSE,
 ...
)

Arguments

 object A fitted model object of class "cpa".
 theta A vector of values to decrement from R-squared to compute families of fungible coefficients.
 Nstarts Maximum number of (max) minimizations from random starting configurations.
 MaxMin Should the cosine between the observed and alternative weights be maximized ("max") to find the maximally similar coefficients or minimized ("min") to find the maximally dissimilar coefficients?
 silent Should current optimization values be printed to the console (FALSE) or suppressed (TRUE)?
 ... Additional arguments

Value

A list containing the alternative weights and other fungible weights estimation parameters

References

Examples

mind <- cpa_mat(mindfulness ~ ES + A + C + Ex + O,
 cov_mat = mindfulness$r,
 n = harmonic_mean(vechs(mindfulness$n)),
 se_var_mat = cor_covariance_meta(mindfulness$r,
 mindfulness$n,
 mindfulness$sevar_r,
 mindfulness$source),

 adjust = "pop")

mind_fung <- fungible(mind, Nstarts = 100)
Locate extrema of fungible OLS regression weights

Description

Identify maximally similar or dissimilar sets of fungible standardized regression coefficients from an OLS regression model.

Usage

S3 method for class 'lm'
fungible(
 object,
 theta = 0.005,
 Nstarts = 1000,
 MaxMin = c("min", "max"),
 silent = FALSE,
 ...
)

Arguments

- `object`: A fitted model object of class "lm" or "summary.lm".
- `theta`: A vector of values to decrement from R-squared to compute families of fungible coefficients.
- `Nstarts`: Maximum number of (max) minimizations from random starting configurations.
- `MaxMin`: Should the cosine between the observed and alternative weights be maximized ("max") to find the maximally similar coefficients or minimized ("min") to find the maximally dissimilar coefficients?
- `silent`: Should current optimization values be printed to the console (FALSE) or suppressed (TRUE)?
- `...`: Additional arguments

Value

A list containing the alternative weights and other fungible weights estimation parameters.

References

Examples

```r
lm_mtcars <- lm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb, data = mtcars)
lm_mtcars_fung <- fungible(lm_mtcars, Nstarts = 100)
```
Description

Correlations between GRE subtests and graduate student GPA from Kuncel et al. (2001).

Usage

data(jobchar)

Format

list with entries r (mean observed correlations), rho (mean corrected correlations), n (sample sizes), sevar_r (sampling error variances for mean observed correlations), sevar_rho (sampling error variances for mean corrected correlations), and source (character labels indicating which meta-analytic correlations came from the same source)

Details

GRE–GPA correlations in rho are corrected for direct range restriction on the GRE and unreliability in GPA. Subtest intercorrelations in rho are observed correlations computed among applicant norm samples. These values are also used in r. Due to compensatory selection on GRE scores, these values will not accurately reflect subtest intercorrelations in selected-student (range-restricted) samples. sevar_rho and sevar_r for GRE subtest intercorrelations are computed with an assumed \(SD_{\rho} = 0.02\).

References

Examples

data(gre)
harmonic_mean

Find the harmonic mean of a vector, matrix, or columns of a data.frame

Description

The harmonic mean is merely the reciprocal of the arithmetic mean of the reciprocals.

Usage

harmonic_mean(x, na.rm = TRUE, zero = TRUE)

Arguments

x A vector, matrix, or data.frame
na.rm Logical. If TRUE, remove NA values before processing
zero Logical. If TRUE, if there are any zeroes, return 0, else, return the harmonic mean of the non-zero elements

Value

The harmonic mean of x

Author(s)

Adapted from psych::harmonic.mean() by William Revelle

Examples

harmonic_mean(1:10)

hrm

Meta-analytic correlations of HRM practices with organizational financial performance

Description

Usage

data(hrm)
Format

list with entries \(r \) (mean observed correlations), \(\rho \) (mean corrected correlations), \(n \) (sample sizes), \(\text{sevar}_r \) (sampling error variances for mean observed correlations), \(\text{sevar}_\rho \) (sampling error variances for mean corrected correlations), and \(\text{source} \) (character labels indicating which meta-analytic correlations came from the same source)

References

Examples

data(hrm)

jobchar
\textit{Meta-analytic correlations of job characteristics with performance and satisfaction}

Description

Self-rated job characteristics intercorrelations and correlations with other-rated job performance and self-rated job satisfaction from Humphrey et al. (2007).

Usage

data(jobchar)

Format

list with entries \(r \) (mean observed correlations), \(\rho \) (mean corrected correlations), \(n \) (sample sizes), \(\text{sevar}_r \) (sampling error variances for mean observed correlations), \(\text{sevar}_\rho \) (sampling error variances for mean corrected correlations), and \(\text{source} \) (character labels indicating which meta-analytic correlations came from the same source)

References

Examples
data(jobchar)

<table>
<thead>
<tr>
<th>mindfulness</th>
<th>Meta-analytic correlations among Big Five personality traits and trait mindfulness</th>
</tr>
</thead>
</table>

Description

Usage
data(mindfulness)

Format

list with entries r (mean observed correlations), rho (mean corrected correlations), n (sample sizes), sevar_r (sampling error variances for mean observed correlations), sevar_rho (sampling error variances for mean corrected correlations), and source (character labels indicating which meta-analytic correlations came from the same source)

References

Examples
data(mindfulness)
n_effective_R2

Effective sample size

Description

Estimate an effective sample size for a statistic given the observed statistic and the estimated sampling error variance (cf. Revelle et al., 2017).

Usage

n_effective_R2(R2, var_R2, p)

Arguments

R2 Observed R^2 value
var_R2 Estimated sampling error variance for R^2
p Number of predictors in the regression model

Details

n_effective_R2 estimates the effective sample size for the R^2 value from an OLS regression model, using the sampling error variance formula from Cohen et al. (2003).

Value

An effective sample size.

References

Examples

n_effective_R2(0.3953882, 0.0005397923, 5)
Correlations between study design moderators and effect sizes for prejudice reduction following intergroup contact

Description

Correlations among study design moderators and study design moderator–observed prejudice reduction effect sizes from Pettigrew and Tropp (2008). Note that correlations with effect size have been reverse-coded so that a positive correlation indicates that a higher level of the moderator is associated with larger prejudice reduction.

Usage

data(prejudice)

Format

list with entries r (observed correlations among moderators) and k (number of samples in meta-analysis)

References

Examples

data(prejudice)

Meta-analytic correlations among team processes and team effectiveness

Description

Team process intercorrelations and team process–team performance/affect correlations from LePine et al. (2008).

Usage

data(team)

Format

list with entries r (mean observed correlations), rho (mean corrected correlations), n (sample sizes), sevar_r (sampling error variances for mean observed correlations), sevar_rho (sampling error variances for mean corrected correlations), and source (character labels indicating which meta-analytic correlations came from the same source)
Details

Note that LePine et al. (2008) did not report confidence intervals, sampling error variances, or heterogeneity estimates for correlations among team processes; included sampling error variances in this list are based on total sample size only and do not include uncertainty stemming from any effect size heterogeneity.

References

Examples

data(team)

```r
var_error_cpa
```

<table>
<thead>
<tr>
<th>var_error_cpa</th>
<th>Estimate the sampling error variance for criterion profile analysis parameters</th>
</tr>
</thead>
</table>

Description

Estimate the sampling error variance for criterion profile analysis parameters

Usage

```r
var_error_cpa(
  Rxx,
  rxy,
  n = NULL,
  se_var_mat = NULL,
  adjust = c("fisher", "pop", "cv")
)
```

Arguments

- **Rxx** An intercorrelation matrix among the predictor variables
- **rxy** A vector of predictor–criterion correlations
- **n** The sample size. If NULL and `se_var_mat` is provided, `n` will be estimated as the effective sample size based on `se_var_mat`. See `n_effective_R2()`.
- **se_var_mat** A matrix of sampling covariance values for the elements of `Rxx` and `rxy`. If NULL, generated using the Normal theory covariance matrix based on `n`.
- **adjust** Method to adjust R-squared for overfitting. See `adjust_Rsq` for details.
vech

Value

A list containing sampling covariance matrices or sampling error variance estimates for CPA parameters

Examples

```r
var_error_cpa(mindfulness$rho[1:5, 1:5], mindfulness$rho[1:5, 6], n = 17060)
```

dech

Vectorize a matrix

Description

cvec returns the column-wise vectorization of an input matrix (stacking the columns on one another). rvec returns the row-wise vectorization of an input matrix (concatenating the rows after each other). vech returns the column-wise half-vectorization of an input matrix (stacking the lower triangular elements of the matrix, including the diagonal). vechs returns the strict column-wise half-vectorization of an input matrix (stacking the lower triangular elements of the matrix, excluding the diagonal). All functions return the output as a vector.

Usage

```r
vech(x)
vechs(x)
cvec(x)
rvec(x)
```

Arguments

x A matrix

Value

A vector of values

Author(s)

Based on functions from the OpenMx package

Examples

```r
cvec(matrix(1:9, 3, 3))
rvec(matrix(1:9, 3, 3))
vech(matrix(1:9, 3, 3))
vechs(matrix(1:9, 3, 3))
vechs(matrix(1:12, 3, 4))
```
Inverse vectorize a matrix

Description
These functions return the symmetric matrix that produces the given half-vectorization result.

Usage
vech2full(x)

vechs2full(x, diagonal = 1)

Arguments
x A vector
diagonal A value or vector of values to enter on the diagonal for vechs2full (default = 1)

Details
The input consists of a vector of the elements in the lower triangle of the resulting matrix (for vech2full, including the elements along the diagonal of the matrix, as a column vector), filled column-wise. For vechs2full, the diagonal values are filled as 1 by default, alternative values can be specified using the diag argument. The inverse half-vectorization takes a vector and reconstructs a symmetric matrix such that vech2full(vech(x)) is identical to x if x is symmetric.

Value
A symmetric matrix

Author(s)
Based on functions from the OpenMx package

Examples
vech2full(c(1, 2, 3, 5, 6, 9))
vechs2full(c(2, 3, 6), diagonal = 0)
wt_cov Compute weighted covariances

Description
Compute the weighted covariance among variables in a matrix or between the variables in two separate matrices/vectors.

Usage

```r
wt_cov(
  x,
  y = NULL,
  wt = NULL,
  as_cor = FALSE,
  use = c("everything", "listwise", "pairwise"),
  unbiased = TRUE,
  df_type = c("count", "sum_wts")
)

wt_cor(x, y = NULL, wt = NULL, use = "everything")
```

Arguments

- `x` Vector or matrix of x variables.
- `y` Vector or matrix of y variables
- `wt` Vector of weights
- `as_cor` Logical scalar that determines whether the covariances should be standardized (TRUE) or unstandardized (FALSE).
- `use` Method for handling missing values. "everything" uses all values and does not account for missingness, "listwise" uses only complete cases, and "pairwise" uses pairwise deletion.
- `unbiased` Logical scalar determining whether variance should be unbiased (TRUE) or maximum-likelihood (FALSE).
- `df_type` Character scalar determining whether the degrees of freedom for unbiased estimates should be based on numbers of cases (n - 1; "count"; default) or squared sums of weights (1 - sum(w^2); "sum_wts").

Value
Scalar, vector, or matrix of covariances.

Author(s)
Jeffrey A. Dahlke
Examples

wt_cov(x = c(1, 0, 2), y = c(1, 2, 3), wt = c(1, 2, 2), as_cor = FALSE, use = "everything")
wt_cov(x = c(1, 0, 2), y = c(1, 2, 3), wt = c(1, 2, 2), as_cor = TRUE, use = "everything")
wt_cov(x = cbind(c(1, 0, 2), c(1, 2, 3)), wt = c(1, 2, 2), as_cor = FALSE, use = "everything")
wt_cov(x = cbind(c(1, 0, 2), c(1, 2, 3)), wt = c(1, 2, 2), as_cor = TRUE, use = "everything")
wt_cov(x = cbind(c(1, 0, 2, NA), c(1, 2, 3, 3)), wt = c(1, 2, 2, 1), as_cor = FALSE, use = "listwise")
wt_cov(x = cbind(c(1, 0, 2, NA), c(1, 2, 3, 3)), wt = c(1, 2, 2, 1), as_cor = TRUE, use = "listwise")

wt_dist

Weighted descriptive statistics for a vector of numbers

Description

Compute the weighted mean and variance of a vector of numeric values. If no weights are supplied, defaults to computing the unweighted mean and the unweighted maximum-likelihood variance.

Usage

wt_dist(
 x,
 wt = rep(1, length(x)),
 unbiased = TRUE,
 df_type = c("count", "sum_wts")
)

wt_mean(x, wt = rep(1, length(x)))

wt_var(
 x,
 wt = rep(1, length(x)),
 unbiased = TRUE,
 df_type = c("count", "sum_wts")
)

Arguments

x Vector of values to be analyzed.
wt Weights associated with the values in x.
unbiased Logical scalar determining whether variance should be unbiased (TRUE) or maximum-likelihood (FALSE).
da_type Character scalar determining whether the degrees of freedom for unbiased estimates should be based on numbers of cases ("count"; default) or sums of weights ("sum_wts").
Details

The weighted mean is computed as

\[\bar{x}_w = \frac{\sum_{i=1}^{k} x_i w_i}{\sum_{i=1}^{k} w_i} \]

where \(x \) is a numeric vector and \(w \) is a vector of weights.

The weighted variance is computed as

\[\text{var}_w(x) = \frac{\sum_{i=1}^{k} (x_i - \bar{x}_w)^2 w_i}{\sum_{i=1}^{k} w_i} \]

and the unbiased weighted variance is estimated by multiplying \(\text{var}_w(x) \) by \(\frac{k}{k-1} \).

Value

A weighted mean and variance if weights are supplied or an unweighted mean and variance if weights are not supplied.

Author(s)

Jeffrey A. Dahlke

Examples

wt_dist(x = c(.1, .3, .5), wt = c(100, 200, 300))
wt_mean(x = c(.1, .3, .5), wt = c(100, 200, 300))
wt_var(x = c(.1, .3, .5), wt = c(100, 200, 300))

Description

Calculate the quadratic form

\[Q = x'Ax \]

Usage

A %&% x

Arguments

A A square matrix
x A vector or matrix

Value

The quadratic product
Examples

diag(5) %&% 1:5
Index

* datasets
 disorders, 9
 gre, 14
 hrm, 15
 jobchar, 16
 mindfulness, 17
 prejudice, 19
 team, 19

* univar
 wt_dist, 24
 %&%, 25
 adjust_Rsq, 3, 20
 adjust_Rsq(), 7
 base::scale(), 9
 configural (configural-package), 2
 configural-package, 2
 configural_news, 4
 cor_covariance, 4
 cor_covariance_meta, 5
 cor_labels, 6
 cpa_mat, 7
 cpa_mat(), 8
 cpa_scores, 8
 cvec (vech), 21
 disorders, 9
 fungible, 10
 fungible.cpa, 11
 fungible.lm, 13
 gre, 14
 harmonic_mean, 15
 hrm, 15
 jobchar, 16
 mindfulness, 17

n_effective_R2, 18
n_effective_R2(), 20
prejudice, 19
rvec (vech), 21
stats::lm(), 3
team, 19
var_error_cpa, 20
vech, 21
vech2full, 22
vechs (vech), 21
vechs2full (vech2full), 22
wt_cor (wt_cov), 23
wt_cov, 23
wt_dist, 24
wt_mean (wt_dist), 24
wt_var (wt_dist), 24